Introduction to SDSS
-instruments, survey strategy, etc

(materials from http://www.sdss.org/)

Shan Huang

17 February 2010
<table>
<thead>
<tr>
<th>Basic Facts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey type</td>
<td>Imaging and Spectroscopy</td>
</tr>
<tr>
<td>Status</td>
<td>SDSS-II completed, SDSS-III on-going</td>
</tr>
<tr>
<td>Coverage</td>
<td>more than a quarter of the sky</td>
</tr>
<tr>
<td>Telescope</td>
<td>2.5-meter telescope at Apache Point Observatory</td>
</tr>
<tr>
<td>Wavelength rang</td>
<td>• Imaging: u(3551Å), g(4686Å), r(6165Å), i(7481Å), z(8931Å)</td>
</tr>
<tr>
<td></td>
<td>• Spectra: 3800-6150Å (blue), 5800-9200Å (red)</td>
</tr>
<tr>
<td>Major instruments</td>
<td>• 120-megapixel camera</td>
</tr>
<tr>
<td></td>
<td>• a pair of spectrographs fed by optical fibers</td>
</tr>
<tr>
<td>Target type</td>
<td>more than 930,000 galaxies, 120,000 quasars, and more than 225,000 stars (Legacy), galactic stars, supernova, etc.</td>
</tr>
<tr>
<td>Basic observing</td>
<td>map one-quarter of the entire sky and perform a redshift survey of galaxies, quasars and stars (Legacy)</td>
</tr>
<tr>
<td>strategy</td>
<td></td>
</tr>
<tr>
<td>Basic data products</td>
<td>• Data archive server: fits images, spectra and catalog table</td>
</tr>
<tr>
<td></td>
<td>• Catalog archive server: search and brows all catalogs and jpeg images</td>
</tr>
<tr>
<td>Status of public</td>
<td>DR7 is the final data release of SDSS-II, the first release of SDSS-III is scheduled for December 2010</td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
</tbody>
</table>
Major Instruments

 Telescope
 - 2.5 modified Ritchey-Chretien telescope, 3° foV, Apache Point Observatory, New Mexico

 Imaging camera
 - Photometric CCDs:
 - 30 2048x2048 square CCDs
 - Pixel size and scale:
 - 24 micron, 0.396 arcsec/pixel
 - Operating mode: drift scan (2p)
 - Integration times: 54s
 - Image frame size: 2048x1361 pixels (13.51x8.98 arcmins)
 - Flux calibration, astrometric CCDs
 - Average wave length of filters
 - u-3551Å, g-4686Å, r- 6165Å
 - i-7481Å, z-8931Å
Major Instruments

- **Spectrograph**
 - Number of fibers: 320x2
 - Spectra of 640 objects at a time
 - Fiber diameter: 3”
 - CCDs: 4, 2048 × 2048, square
 - Channels: 3800-6150Å (blue), 5800-9200Å (red)
 - Pixel size: 69 km/s
 - Spectral resolution: 1850 - 2200
 - Typical integration time:
 - 3 exposures of 15 minutes each

- **Photometric telescope**
 - A separate telescope with a 20" aperture
 - FoV: almost a full degree
 - CCD: 2048x2048 pixel
 - Pixel scale: 1.15 arcsec/pixel
SDSS-I

- First phase of operation (2000-2005)
 - EDR-DR?
 - imaged more than 8,000 square degrees of the sky in five optical bands
 - obtained spectra of galaxies and quasars selected from 5,700 square degrees of that imaging
 - obtained repeated imaging (roughly 30 scans) of a 300 square degree stripe in the southern Galactic cap
SDSS-II

- Time frame: 2005 – 2008 (final data release: DR7)

- Main surveys:
 - Sloan Legacy Survey
 - SEGUE (the Sloan Extension for Galactic Understanding and Exploration)
 - Sloan Supernova Survey

- Additional supplementary imaging:
 - M31 / Perseus / Sgr / SGP scans (46 deg2)
 - Low Galactic latitude fields “Orion runs” (832 deg2)
Sloan Legacy Survey

- Sky Coverage: 8,423 deg² of imaging and spectra
 - 7,646 deg² of North Galactic Cap
 - 740 deg² of three stripes in the South Galactic Cap
 - 300 deg² central stripe scanned multiple times

- Target: 930,000 galaxies, 120,000 quasars, and 225,000 stars

- Imaging data are available as FITS files
 - Calibrated astrometric and photometric parameters and classifications

- Spectra
 - Main: a magnitude-limited sample of galaxies
 - Luminous Red Galaxies (LRG):
 - a near-volume-limited sample
 - 0.2 < z < 0.38 (down to r_Petrosian = 19.2)
 - A magnitude-limited sample of quasars
Sloan Legacy Survey

- SDSS galaxy map and quasar spectra

Large scale structure in the northern equatorial slice of the SDSS main galaxy redshift sample

\[r_{\text{PSF}} - r_{\text{model}} \geq 0.3, \quad r_p < 17.77 \]
\[\mu_{50} \leq 23.0 \text{ mag arcsec}^{-2} \text{ in } r, \]
median redshift: 0.104
SEGUE

- Sky coverage: new imaging of 3250 deg2 at lower Galactic latitudes

- Spectra target: 240,000 stars in a variety of categories in selected fields, from white dwarfs to giants

- Science objective: explore the structure, formation history, kinematics, dynamical evolution, chemical evolution, dark matter distribution of the Milky Way.

SEGUE scan - note the open (reddened) cluster.
Sloan Supernova Survey

- Science motivation: detect and measure light curves for several hundred supernovae

- Survey strategy: repeat imaging of the same region of sky every other night (SDSS Southern equatorial stripe 82, about 2.5° wide by 120° long repeated ~80 scans)

- Detections
 - multi-band lightcurves for ~500 spectroscopically confirmed Type Ia supernovae (z=0.05-0.4)
 - a few hundred light curves for SNe Ia not confirmed
 - 80 spectroscopically confirmed core-collapse supernovae
SDSS-III

- Main surveys:
 - Baryon Oscillation Spectroscopic Survey (BOSS)
 - Measure the cosmic distance scale via clustering in the large-scale galaxy distribution and the Lyman-α forest
 - SEGUE-2
 - Map the structure, kinematics, and chemical evolution of the outer Milky Way disk and halo (double the sample of SEGUE)
 - APOGEE
 - Use high-resolution infrared spectroscopy to see through the dust to the inner Galaxy
 - MARVELS
 - probe the population of giant planets via radial velocity monitoring of 11,000 stars
SDSS Science Objectives

- The properties of galaxies
- The evolution of quasars
- The structure and stellar populations of the Milky Way
- Dwarf galaxy companions of the Milky Way and M31
- Asteroids and other small bodies in the solar system,
- The large scale structure and matter and energy contents of the universe