DETF - Weak lensing
Introduction to gravitational lensing

- **Strong lensing**
 - Multiple img, arc, ring
 - Map out mass distribution on small scales (missing satellite problem)

- **Weak lensing**
 - Small distortion
 - Intrinsic unknown
 - Need statistics of ε of all galaxies in many patches of sky

Fig. VI-6: Schematic of gravitational lensing: the deflection angle apparent to the observer at left depends both upon the mass of the deflector and on the distance ratios between source, lens, and observer.
Measurable quantity of distortion

- Distortion tensor \((A_{ij})\) depends on mass distribution
 \[
 \theta'_i = A_{ij} \theta_j \\
 A_{ij} = \delta_{ij} + \frac{\partial^2 \Psi}{\partial \theta^i \partial \theta^j}
 \]

- \(\Psi\) - lens potential projected along the line of sight

- Shear is a component of distortion tensor
 \[
 A_{ij} = \begin{pmatrix}
 1 + \kappa + \gamma_1 & \gamma_2 \\
 \gamma_2 & 1 + \kappa - \gamma_1
 \end{pmatrix}
 \]

- \(\kappa\) - mag or de-magnification \(\gamma_1\) and \(\gamma_2\) - shear

- Galaxy ellipticity is an estimator of shear
 \[
 < \epsilon_i > \approx 2 \gamma_i
 \]
Effect of dark energy on WL statistics

- Modifies the angular-diameter distances
 - Universe expansion depends on DE, D(z)

- Modifies the rate of growth of the structure
 - Large scale evolution depends on DE, g(z)

- Modifies the shape of linear matter power spectrum
WL as a powerful tool

- Weak lensing is potentially the most powerful probe of dark energy ... The ultimate limit would be set by the extent to which the systematic can be controlled – ‘DETF’
- Based on clean physics, measure directly mass instead of light
- Powerful technique to measure large scale structure and the evolution of large scale structure (3D lensing, slice in redshift)
- Map of the dark matter distribution
- Precise and complementary measurement of cosmological parameters
- Test of general relativity
Why is WL hard

- Accurate galaxy shape measurement is essential
 - Atmosphere seeing (largest effect if ground-based)
 - Intrinsic alignments (e.g. tidal field)
 - Instrument PSF and detector effect (e.g. charge transfer inefficiency)

- Need accurate redshift
 - Photometric redshift

- Good statistics comes from large sky converge
 - Power spectrum of lensing signal, etc.
Future surveys

- Kilo Degree Survey (KiDS): sloan bands, 1500 deg2, VST
- VISTA Kilo-degree IR Galaxy Survey (VIKING): Z, Y, J, H, Ks
- PanSTARRS
- Dark Energy Survey (DES): 5000 deg2, 4m at CTIO
- Subaru: 2000 deg2, HyperSuprimeCam on 8.2m
- LSST, SKA
- Space: Dark UNiverse Explorer (DUNE), SNAP
- Future space: JDEM, Euclid