The Expanding Universe

Relativity and Astrophysics
Lecture 18
Terry Herter

Outline

- Age of the Universe
- The Big Bang
- Useful table
 - Look-back times and distances vs. redshift
The Age of the Universe

- Hubble’s law tells us that for galaxies: \(v = H_0 d \)
- Since the universe is expanding, galaxies were closer together in the past.
- Extrapolating backwards, all the galaxies were on top of one another! – When was this?

Age (cont’d)

- If the universe has been expanding uniformly, the time for this is:
 \[t = \frac{d}{v} \]
- Inserting Hubble’s law:
 \[t = \frac{d}{H_0 d} = \frac{1}{H_0} \]
- Suppose \(H_0 = 100 \text{ km/sec/Mpc} \), then
 \[t = \frac{1}{H_0} = \frac{1 \text{ sec}}{100 \text{ km}} \frac{1 \text{ yr}}{3 \times 10^7 \text{ sec}} \frac{10^6 \text{ pc}}{3 \times 10^{15} \text{ km}} = 10^{10} \text{ yr} \]
- So
 - for \(H_0 = 100 \), \(t = 10 \times 10^9 \text{ years} = 10 \text{ billion years} \)
 - for \(H_0 = 50 \), \(t = 20 \times 10^9 \text{ years} = 20 \text{ billion years} \)
 - for \(H_0 = 71 \), \(t = 14 \times 10^9 \text{ years} = 14 \text{ billion years} \)
The Expanding Universe

Historical Measurements of H_0

The Big Bang

- The present location and velocities of galaxies are a result of a primordial blast known as the **BIG BANG**.
 - THE BEGINNING OF THE UNIVERSE
 - THE BEGINNING OF TIME?!

- What is the BIG BANG?
 - The Big Bang was NOT an explosion in an otherwise empty universe.
 - The Big Bang involved the entire universe.
 - At the beginning the Big Bang happened everywhere at once.
Expansion of the Universe

- As the Universe expands
 - Galaxies move further apart
 - Photons “stretch” (get redshifted)
- The 2-D analog is an expanding sphere
- Thus the cosmological redshift we see is due the expansion of space itself.

Source Flux: Cosmological Effects

- Effects of redshift on flux – compared to emission in rest frame
 - Photons lose energy
 - Time dilation so photons come out at a slower rate
 - Filter bandwidth maps to different width
- Geometric effect
 - Hidden in a^2 term for the flux.

Example: $z = 1$ at source

Astronomer uses a filter operating from 4 and 5 GHz. The photons were emitted from the source with frequencies 8 and 10 GHz.

$$4 \cdot (1 + z) - 4 \cdot (1 + 1) = 8$$
$$5 \cdot (1 + z) - 5 \cdot (1 + 1) = 10$$

blue = emitted
red = observed (dashed)
Look back times

- As we look further out in the universe we are seeing it at earlier times!
 - It takes a long time for light to get here.
- Telescopes are thus “time machines” which allow us to look at the early universe.

- The following table shows the “look-back” time as well as
 - Luminosity distance = effective distance to convert flux into luminosity
 - Angular diameter distance = effective distance to get the size of an object as seen from the Earth

<table>
<thead>
<tr>
<th>redshift</th>
<th>v/c</th>
<th>Look-back time</th>
<th>Time after Big Bang</th>
<th>Luminosity distance</th>
<th>Angular diameter distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Gyr)</td>
<td>(Gyr)</td>
<td>(Glyr)</td>
<td>(Glyr)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.095</td>
<td>1.286</td>
<td>12.387</td>
<td>1.484</td>
<td>1.226</td>
</tr>
<tr>
<td>0.2</td>
<td>0.180</td>
<td>2.408</td>
<td>11.265</td>
<td>3.166</td>
<td>2.199</td>
</tr>
<tr>
<td>0.4</td>
<td>0.324</td>
<td>4.257</td>
<td>9.416</td>
<td>7.048</td>
<td>3.596</td>
</tr>
<tr>
<td>0.5</td>
<td>0.385</td>
<td>5.019</td>
<td>8.654</td>
<td>9.210</td>
<td>4.093</td>
</tr>
<tr>
<td>1.0</td>
<td>0.600</td>
<td>7.732</td>
<td>5.941</td>
<td>21.64</td>
<td>5.411</td>
</tr>
<tr>
<td>2.0</td>
<td>0.800</td>
<td>10.326</td>
<td>3.347</td>
<td>51.34</td>
<td>5.705</td>
</tr>
<tr>
<td>5.0</td>
<td>0.946</td>
<td>12.473</td>
<td>1.200</td>
<td>155.3</td>
<td>4.314</td>
</tr>
<tr>
<td>6.5</td>
<td>0.965</td>
<td>12.813</td>
<td>0.860</td>
<td>211.2</td>
<td>3.755</td>
</tr>
<tr>
<td>10.0</td>
<td>0.984</td>
<td>13.189</td>
<td>0.484</td>
<td>346.9</td>
<td>2.867</td>
</tr>
</tbody>
</table>

Calculations for $H_0=71$ km/sec/Mpc, $\Omega_m = 0.27$, $\Omega_{\Lambda} = 0.73$. For an observed flux, f_o from a source with intrinsic (emitted) luminosity, L_e, the luminosity distance, d_L, is defined by:

$$f_o = \frac{L_e}{4\pi d_L^2}$$

Luminosity distance takes into account distance, redshift, and geometric effects. Angular diameter distance, $d_A = d_L(1+z)^2$, is the size of an object on the sky.