Doppler Effect

Relativity and Astrophysics
Lecture 10
Terry Herter

Outline

- Doppler Shift
- The Expanding Universe – Hubble’s discovery

Reading
- Spacetime Physics: Chapter 4
- Problem L-2, page 112 (due today/Monday)
 - Will hand back on Monday if you hand it in on today

Prelim

- Wednesday, Sept. 23
- Closed book and notes, will cover material through today
- Should know:
 - Spacetime interval, fundamental postulates of Special Relativity, simultaneity and other issues raised by relativity
 - Will have both qualitative and quantitative questions
 - Lorentz Transformation equations will be provided (if needed)
Doppler Effect

The Doppler effect is extremely important for Astronomy.

- This is a shift in the frequency (wavelength) of light from an atom due to motion with respect to the observer.
- It is the Doppler effect the allows measurement of the expansion of the Universe (resulting from the Big Bang)

Following problem L-5 in the textbook we will derive the Doppler shift.

Doppler Shift

Consider a rocket which has source that emits pulse with a frequency f' (pulses or "waves" per second).
- Suppose these waves travel in the positive x-direction with a speed c.
- Thus distance between pulses will be c/f (velocity \times time).

Setting up the origins
- Let the 0th pulse pass the origin ($x = 0$) at $t = 0$ and choose the origin of the rocket to pass the origin of the laboratory at the same time.

Lab Frame:
- The 0th pulse moves to the right with the speed of light, so its position at any given time $x = t$.
- The next pulse is delayed by a distance/time c/f, while the 2nd pulse is delayed by $2c/f$, etc. Thus the position for the nth pulse is given by

$$x = t - \frac{n}{f} \frac{c}{f} \Rightarrow \quad n = \frac{f}{c}(t-x)$$

For the lab frame.
Doppler Effect

Doppler Shift

- We can perform the same argument to get the equivalent relationship for the rocket frame.
 \[x' = t' - n \frac{c}{f} \Rightarrow n = \frac{f'}{c} (t' - x') \]

- Now apply the inverse Lorentz transformation (moving from the rocket frame to the lab frame).
 \[t' = \gamma t - v_{rel} \gamma x \quad x' = \gamma x - v_{rel} \gamma t \]

- To get
 \[n = \frac{f'}{c} \left((t - v_{rel}x) - (\gamma x + v_{rel} \gamma t) \right) = \frac{f'}{c} (1 - v_{rel}) (t - x) \]

- Substituting for \(\gamma \) gives
 \[n = \frac{f'}{c} \left(\frac{1 + v_{rel}}{1 - v_{rel}} \right)^{1/2} (t - x) \]

Doppler Shift

- Set the two equations for \(n \) equal (since they much correspond to the same pulse (event) gives:
 \[f = f' \left(\frac{1 + v_{rel}}{1 - v_{rel}} \right)^{1/2} \]

- For pulse going in the negative \(x \)-direction
 - We have the equivalent equations but the pulse is moving to the left.
 \[n = \frac{f}{c} (t + x) \quad n = \frac{f'}{c} (t' + x') \]

- Using the Lorentz transformation and following the same logic we arrive at the shift in frequency for pulses traveling to the left.
 \[f = f' \left(\frac{1 - v_{rel}}{1 + v_{rel}} \right)^{1/2} \]

- These two equations are equivalent. A sign accounts for whether the source is moving towards you or not (by convention positive velocities are those that are moving away)
Astronomers define the redshift, \(z \), of an object as:

\[
z = \frac{f_{\text{emit}} - f_{\text{obs}}}{f_{\text{obs}}}
\]

Note that

\[
1 + z = \frac{f_{\text{obs}}}{f_{\text{emit}}} = \frac{f_{\text{emit}} - f_{\text{obs}}}{f_{\text{obs}}} = \left(\frac{1 + v_{\text{rel}}}{1 - v_{\text{rel}}} \right)^{1/2}
\]

If the redshift is known we can solve for the velocity of the object. This gives

\[
v_{\text{rel}} = \frac{(1 + z)^2 - 1}{(1 + z)^2 + 1}
\]

Quasars have been measured to very high redshifts. For instance, a quasar measured to have \(z = 4.897 \), the above equation gives a velocity (relative to the speed of light), \(v_{\text{rel}} = 0.944 \).

At low velocities

\[
1 + z \approx \left(\frac{1 + v_{\text{rel}}}{1 - v_{\text{rel}}} \right)^{1/2} \approx \left(1 + \frac{v_{\text{rel}}}{2} \right) \left(1 + \frac{v_{\text{rel}}}{2} \right) = 1 + v_{\text{rel}} + \frac{1}{4} v_{\text{rel}}^2
\]

Ignoring terms greater than linear in \(v_{\text{rel}} \),

\[
z = v_{\text{rel}}
\]

Astronomers typically use the conventional velocity rather than one relative to the speed of light. This then becomes

\[
z = \frac{v_{\text{emit}}}{c}
\]

For nearby objects (galaxies) this approximation works well.
Early Astronomical History

- Slipher (~1912) noticed that spiral nebulae showed almost predominantly redshifts.
 - By 1925 he had radial velocities for 40 galaxies
- Hubble used the 100-inch telescope on Mt. Wilson to measure distances to 18 galaxies
 - Found linear relation between increasing redshift and increasing distance, now known as Hubble’s law

\[H_o d = v_{\text{conv}} \sim cz \]

- Hubble found that the Universe is expanding!
 - The greater the distance, the higher the recession velocity
- A major goal of HST was to measure \(H_o \) accurately.
 - Currently, \(H_o \sim 70 \text{ km/s/Mpc} \)
 - Often used is \(H_o = 100 \ h \text{ km/s/Mpc} = (10^{10} \text{ yrs})^{-1} h \)